
Evaluation of Highly Available Cloud Streaming
Systems for Performance and Price

Dung Nguyen

School of Computing

Clemson University

dungn@clemson.edu

Andre Luckow

School of Computing

Clemson University

aluckow@clemson.edu

Edward B. Duffy

Elect. & Comp. Eng.

Clemson University

duffy2@clemson.edu

Ken Kennedy

School of Computing

Clemson University

kkenned@clemson.edu

Amy Apon

School of Computing

Clemson University

aapon@clemson.edu

Abstract—This paper presents a systematic evaluation of Ama-
zon Kinesis and Apache Kafka for meeting highly demanding
application requirements. Results show that Kinesis and Kafka
can provide high reliability, performance and scalability. Cost
and performance trade-offs of Kinesis and Kafka are presented
for a variety of application data rates, resource utilization, and
resource configurations.

I. INTRODUCTION

This paper evaluates cloud streaming solutions for a use

case that requires both high performance and high availability

of the message infrastructure. An example application of such

a stream system is one that captures log messages and detects

potential denial-of-service attacks in real time. Because the

goal is to identify potential security threats, the system must

be extremely reliable, without loss of any messages at all. We

also require manageable costs.

Data streaming frameworks vary greatly with respect to their

level of reliability, message production and consumption per-

formance, and their ability to adaptively scale to avoid losing

data or to manage costs. Two main architectural framework

options exist: open source tools such as Kafka and cloud-

native solutions such as Kinesis, which their specifications and

architectures are described in [1] and [2]. While open source

solutions provide great flexibility, the management and scaling

efforts are typically higher than for managed cloud solutions.

The majority of prior related research focuses on qualitative

comparisons such as architectures that use traditional, on-

premise deployments. Formal evaluation of streaming process-

ing architectures using the commercial cloud has emerged

only recently. Luckow et. al. [3] investigate stream process-

ing architectures in the context of high performance and

cloud computing. The performance of Apache Kafka has

been studied previously [1], [4], [5], and some investigations

have focused on cloud architectures for Kafka [6] with high-

level guidance. There are a few previous studies of Kafka

and Kinesis [7] [8] [9], focus on comparing their delivery

mechanism and supported features.

This paper provides the first comprehensive analysis of the

performance and costs trade-offs of Kafka and Kinesis using

comparable cloud deployments. Our main contributions are:

• We present a systematic evaluation of reliability and

performance of the Amazon Web Service (AWS) Kinesis

cloud-native solution, and the Kafka open source solution

deployed using AWS.

• We compare costs of the two solutions for a range of

configurations that meet performance targets (Section III).

Our results show that Kinesis throttles producing clients,

ensuring that the infrastructure will have sufficient buffers

to receive all sent messages, while Kafka does not throttle

producing clients and must maintain sufficient buffers in the

infrastructure to avoid dropping messages. We analyze the cost

and performance trade-offs of Kinesis and Kafka for a variety

of data rates, resource utilization, and resource configurations.

II. PERFORMANCE AND RELIABILITY EVALUATION

In this section we describe the experimental evaluation of

the performance and reliability of Kinesis and Kafka. Our

message stream is synthetically generated with some variation

to provide ranges of evaluation for different workloads. In each

experiment, messages have a fixed length in bytes, and we

assume that there are no malformed messages. We perform the

evaluation with different counts of shards, or partitions, for val-

ues 1, 2, 4, 8, 16, and 32. For each count of shards/partitions,

the producers generate six levels of data velocities: 1, 2, 4,

8, 16, and 32 MB/s. Throughput, latency, buffer time, and

errors metrics for both consumers and producers are measured.

Experiments also record the delivery status of all records to

confirm if all produced records are received.

We primarily report the results for “m4.large”, which is the

smallest instance type that provides non-burstable network per-

formance in AWS, which is critical for real-time performance.

The only configuration parameter of Kinesis is the count of

shards. All experiments are repeated to provide statistically

significant results. To test reliable delivery of messages, we

added an ID to each message and then recorded its delivery to

the consumers. This allowed us to test the effect of producing

a burst messages at a rate that is higher than that guaranteed

by the configuration options and to observe the behavior of

the systems under extremely high load.

In all of the experiments, only one message was dropped in

the Kinesis experiments. This occurred for an experiment in

which Kinesis was configured with one shard and the data rate

was 32 MB/s, which is 32 times the guaranteed throughput of

a single Kinesis shard. We were not able to reproduce this

error. No data loss was observed with the Kafka experiments.

360

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

0-7695-6410-0/18/$31.00 ©2018 IEEE
DOI 10.1109/CCGRID.2018.00056

Kinesis Producer Throttling: When the message production

rates by Kinesis Producers are larger than the guaranteed

rate of the Kinesis Stream’s settings, we expect and observe

throttling by Kinesis. It is the responsibility of the producer to

buffer the messages and resend them if redelivery is required.

We find that Kinesis begins throttling at a rate that is

lower than the theoretical (i.e., configured) throughput. Fig. 1

shows Kinesis producer throughput compared to the theoretical

throughput for each count of shards from 1 to 32. For one

shard, the producer can produce at 1MB/s, which is the

same as the theoretical rate. However, Fig. 1 shows that the

producer is not able to produce to the level of theoretical

throughput. That is, messages are returned with a failure code.

The impact is higher for higher shard counts. The ratio of

achieved throughput to theoretical throughput for 32 shards is

close to 85%. The architectural design of Kinesis that makes

it highly reliable by avoiding overload impacts the throughput

performance at higher data rates.

Fig. 1: Kinesis producer vs theoretical throughput. The maximum throughput
that Kinesis actually receives from producers is less than the theoretical limit.
The Kinesis throughput limit (in MBps) equals the shard count.

Kinesis Error Reporting: Kinesis provides a guaranteed level

of message delivery that depends on the count of shards. When

the message rate exceeds the guarantee, messages may still

be delivered successfully in many cases. However, when a

message cannot be delivered from the Producer to Kinesis,

Kinesis returns an error code. It is up to the Producer to take

action to mitigate data loss. Fig. 2 graphs the relation between

Producer throughput and this error rate. Actual data loss can

only be verified on the Consumer side. In our experiments, the

Producer client was set to retry an indefinite number of times,

and an error rate of up to 10% still provided data transmission

without loss, even with throttling, due to the retries.

Fig. 2 shows in the upper left subchart that errors are

reported for a message rate of 2 MB/s with a single shard

(though still with successful delivery after retries), but that

errors are not reported until the message rate reaches 32 MB/s

in the case of 32 shards, as shown in the lower right subchart.

Kinesis Latency with High Producer Data Rates: When the

production rate is high, producers buffer records until the

records’ TTL expires. This behavior causes the time to the

delivery of the messages (i.e, the latencies) to increase.

Fig. 3 shows that when the Producer throughput does not

exceed guaranteed throughput, the latency is small and stable.

Latency increases as the throughput increases. The maximum

latency is approximately 3 seconds (as shown on the log scale).

Fig. 3 also shows that the latency for a higher number of shards

Fig. 2: Kinesis error rate (which indicates throttling) and producer throughput
for different shard counts. The rate is close to 0 when the generation rate is
smaller than the stream capacity. Only for the case when 32 MB/s of data are
put into a stream configured for 1 MB/s is message loss detected.

is the same as the latency for a lower number of shards as long

as the message rate is below the guaranteed throughput.

Kinesis streams behave as expected in most cases. The

maximum throughput that a stream can handle in practice is

close to its theoretical throughput. When the data rate exceeds

the stream’s designed throughput then the producer stores non-

delivered data in its buffer until they are successfully sent. By

configuring the expiration time of a record to high values, the

producer will try to resend the data until all data in the stream

is received by consumers.

Kafka Latency Compared to Kinesis Latency: Kafka does not

throttle producers so we do not need to test for that effect.

We evaluate Kafka latency for increasing message rates for

different counts of partitions, and compare the result to that

of Kinesis with an equivalent count of shards. We execute

Kafka on “m4.large” instance.

Fig. 3 shows that for the smallest message rate Kafka has

lower latency than Kinesis. However, as the message rate

increases, Kafka latency increases to a higher value than that

of Kinesis. This is true for all message rates except the highest

rate with 32 shards (for Kinesis) and 32 partitions (for Kafka).

In that case the message rate does not exceed the capability

of the systems as configured and the latency stays low.

Throughput Comparison: Fig. 1 compares Kinesis throughput

and Kafka throughput for a fixed high message rate and

a varying number of shards or partitions. Fig. 1 illustrates

again the effect of the throttling by Kinesis of the producer

throughput. For a fixed high message rate, Kinesis throughput

increases as the count of shards increases. That is, it passes the

messages to the consumer at a higher rate as more shards are

added. Kafka throughput is high for even a single partition,

though higher for more partitions than a single partition.

Consumer Performance: Fig. 4 shows an important charac-

teristic of the scalability in the performance of consumers in

both Kafka and Kinesis systems. They are strongly affected

by the number of shards/partitions. In both systems, the higher

the number of shards/partitions, the more consumer units can

concurrently process data.

III. COST ANALYSIS

Cost analysis is an important step in the engineering of a

complete end-to-end streaming system. We compare Kinesis

361

Fig. 3: Relation between producer throughput and latency for different numbers of shards/partitions. For each count of shards, the Kinesis producer throughput
(upper row) is limited by the Stream capacity and the corresponding latency grows. Increasing the number of shards in the Kinesis Stream only helps when
producers requires a higher throughput. For Kafka, using more partitions may decreases the latency, even the producer throughput does not exceed its capacity
and a smaller number of partitions can handle the throughput well. With 32 shards/partitions, Kinesis and Kafka have the similar latencies.

and Kafka under various configuration scenarios using the of

m4.large, our weakest instance type, in the Northern California

region of AWS. Different pricing models are possible for

computer instances in AWS, including Spot, On-Demand,

Reserved, and Scheduled Instances. For our comparison we

consider the cheapest instance purchase model for Kafka,

Reserved Instances requiring a contract of three years with

payment all upfront.

Parameters for Cost Calculation: Kinesis pricing is mainly

based on shard hours, currently US $0.0182 per shard hour in

AWS Northern California Region. A surcharge of US $0.025

applies for extended data retention, which keeps the data alive

inside a Kinesis Stream up to seven days. By default, data are

temporarily stored inside the Kinesis Stream for twenty-four

hours from the time of reception.

Amazon charges for the amount of incoming data. A PUT

Payload Unit (PPU) is counted in each 25KB chunk of data

or a whole record, depends on which is smaller. For example,

a record up to 25 KB is one PPU, while a 30 KB record is

counted as two PPUs. In California Region, Amazon charges

PPU by chunks of millions, with the price of US $0.0185 per

million units. Other data transmissions are free, including the

data transferred from Amazon Kinesis to consumers.

Kinesis users typically also pay for Amazon CloudWatch

for the metrics used to monitor the health and workload of

Amazon Kinesis. Though the use of this service is optional,

monitoring the system is extremely critical, more so than

normal applications that also utilize the CloudWatch service.

The price of this service depends on how many metrics are set

up for the Kinesis, and how often these metrics are requested.

In our experiments, the first 1,000,000 requests are free of

charge, while the first 10,000 metrics cost US $0.30 per month

for each metric-month. Also, if the consumers use the Amazon

Kinesis Consumer Library (for example, Kinesis integration

for Apache Spark), AWS charges US $0.81 per month for

each DynamoDB instance used by one application, which is

provisioned by the library by default. The capacity of the

default DynamoDB table includes 10 reads/writes per second.

With a higher frequency of checkpoints in the consumers or

a larger number of shards in the stream, it requires a higher

read/write units of the DynamoDB.

An industrial Kafka system must consist of at least two

machines with independent storage devices to eliminate the

single point of failure in the broker. Each EC2 instance

requires two EBS volumes to work as two physical disks in

a typical computer. The first 20 GB volume is used to store

the OS, necessary software applications, and libraries. With

the cheapest type of EBS this volume costs US $4 per month.

The second volume is designed to store Kafka’s temporary

data. The required size of the second volume depends on the

incoming data throughput and the length of data retention

before deletion. With an incoming throughput of 1 MB/s

the amount of data received every 24 hours is 86.4 GB. To

accommodate the overhead in storing data, we provision a

volume of 100 GB to store each unit of incoming throughput

up to 1 MB/s in 24 hours.

In general, AWS charges for the amount of data transferred

in and out of EC2 instances, as well as data transferred be-

tween Availability Zones (AZ) inside each region and between

regions. Data transmissions between instances in the same AZ

has no charge. One TB of data incoming from the Internet to

EC2 instances costs $1, while each TB of data transferred

from EC2 instances to the Internet is charged $10. For data

transmitted between multiple AZs in the same Region and

between Regions, the prices for each TB are $1 and $2,

respectively.

Cost Comparison: Figure 5 shows costs of Kafka and Kinesis

settings for 24 hours of data storage. All costs are calculated

based on Amazon Simple Monthly Calculator. The y-axis of

the graphs shows the monthly total cost in US Dollars of using

those services in Northern California region while the x-axis

indicates different level of throughput in MB/s.

With the Kinesis Stream service, the price of services does

not depend only on the throughput of incoming data but the

number and the size of records (PUT Payload as described

above). Since the average size of records in our experiments

is 3 KB, we consider the costs in several scenarios, in which

the sizes of records are 1 KB, 3 KB or 10 KB in our

analysis. To deal with the scale of incoming throughput,

Kinesis Stream has to use more streams to handle the stream

362

Fig. 4: Producer/Consumer Throughput Across Different Number of Shards/Partitions for Kinesis and Kafka. Though there are differences in Kafka
and Kinesis producer’s behavior with respect to the number of shards/partitions, their consumer’s performances and scalability are similar. Both Kafka and
Kinesis consumer performances are related closely with the number of shards/partitions.

of data efficiently: each shard in a Kinesis Stream will handle

at most 1 MB/s of data. If not, throttling will happens and

lead to an unsustainable situation in the producers’ buffers.

The cost of Kinesis Streams, therefore, largely depends on the

number of shards, which scales by the rate of incoming data.

Fig. 5: Cost Comparison. Kafka costs less than Kinesis with small (1KB)
messages, but generally costs more with larger (3KB or 10KB) messages. In
Kinesis, with the same throughput, larger messages require fewer PUT calls,
reducing total cost.

The cost of Kafka, however, grows using a different mecha-

nism. With a throughput of 1 MB/s of incoming data, a Kafka

cluster needs a 100 GB of storage for each Kafka instance

for 24 hour storage. With a higher level of throughput, larger

storage is needed to keep temporary data. Also, deploying

Kafka in AWS EC2 instances requires paying the cost for

data bandwidth, which also grows with the rate of incoming

data.

Figure 5 shows that Kinesis Stream has different prices

for different sizes of records, which is more expensive when

record size is small, and cheaper if the size of records are

large. The price of the Kafka system is lying between Kinesis

prices for record sizes of 1KB and 3KB.

IV. DISCUSSION AND CONCLUSIONS

We have evaluated the cloud-native Kinesis and the open-

source Kafka along several dimensions of reliability, per-

formance, and cost. We find that both systems are highly

reliable for the configurations tested, even under very high

load. Kinesis dropped one message in our experiments when

the tested load was 32 times higher than its guaranteed level

of service. With respect to performance, we find that Kinesis

throttles the Producer client and only accepts messages it can

receive into its configured buffers. Kafka does not throttle the

Producer client, which places the responsibility on Kafka to

provide sufficient buffers to support the stream.

The cost of Kinesis is about four times lower than that

of Kafka for the largest message sizes, and provides similar

service guarantees. Kafka requires more expertise to configure

and to set up in a reliable, fault tolerant way. It provides

however a higher degree of customize-ability and flexibility. In

comparison, Kinesis is much easier to use “out of box”. Also,

Kinesis is a managed service with very high availability.

In the tested configurations neither Kinesis nor Kafka can

dynamically scale to add or subtract shards/partitions as the

stream rate changes. Both of these can be set up to scale

dynamically with some programming effort. In the future, we

will investigate further aspects of cloud-based stream process-

ing, e. g., the ability to process streaming data using scalable

machine learning algorithms for abnormal event detection and

other types of analyses.

REFERENCES

[1] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging system
for log processing. In Proceedings of 6th International Workshop on
Networking Meets Databases (NetDB), Athens, Greece, 2011.

[2] Amazon kinesis. https://aws.amazon.com/kinesis/, 2017.
[3] Andre Luckow, Peter Kasson, and Shantenu Jha. Pilot-Streaming: Design

Considerations for a Stream Processing Framework for High-Performance
Computing, March 2016.

[4] Jay Kreps. Benchmarking apache kafka: 2 million writes per second
(on three cheap machines). https://engineering.linkedin.com/kafka/
benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines,
2014.

[5] Yuheng Du, Mashrur Chowdhury, Mizanur Rahman, Kakan Dey, Amy
Apon, Andre Luckow, and Linh Bao Ngo. A distributed message
delivery infrastructure for connected vehicle technology applications.
IEEE Transactions on Intelligent Transportation Systems, 2017.

[6] R. Ranjan. Streaming big data processing in datacenter clouds. IEEE
Cloud Computing, 1(1):78–83, May 2014.

[7] Kartik Paramasivam. How were improving and advancing kafka
at linkedin. https://engineering.linkedin.com/apache-kafka/how-we
re-improving-and-advancing-kafka-linkedin, 2015.

[8] Tianning Zhang. Reliable event messaging in big data enterprises: Look-
ing for the balance between producers and consumers. In Proceedings
of the 9th ACM International Conference on Distributed Event-Based
Systems, DEBS ’15, pages 226–233, New York, NY, USA, 2015. ACM.

[9] M. Rostanski, K. Grochla, and A. Seman. Evaluation of highly available
and fault-tolerant middleware clustered architectures using rabbitmq.
In 2014 Federated Conference on Computer Science and Information
Systems, pages 879–884, Sept 2014.

363

